Abstract:
Wireless Multimedia Sensor Networks (WMSNs) are comprised of sensor nodes that form the momentary network and do not rely on the support of any orthodox centralized infrastructure or administration. Such a given situation mandates that every sensor node gets the support of the other sensor nodes in order to advance the packets to the desired destination node, and specifically to the sink node. Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a challenge due to their limited bandwidth and power resources. The existing WMSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs vary as it depends on the correct location of the sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption and synchronization loss between neighboring nodes. The focus is on hidden node problems in WMSNs and how they can affect the network performance. Hidden nodes occur in the networks when nodes that are invisible to each other communicate with another node that is visible to these nodes at a particular period. Eventually, a collision may occur and the node will be unable to receive any packets. In addition, this study looks at the effectiveness of the optimal orientation for the sensor nodes in the environment. This work introduces an Optimized Hidden Node Handling (OHND) approach. The OHND consists of three phases: hidden node handling, message exchange, and location and view handling. These three phases aim to maximize the multimedia node coverage and improve energy efficiency, hidden node handling capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process to handle the mobility of the nodes. To evaluate the performance of the proposed algorithms, the results are compared with other known approaches. The results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage, achieve power efficiency, reduce the end-to-end delay, and improve the throughput. Finally, this study provides an efficient solution for handling the hidden node problem in case mobility.