FPGA based Directional control of MTB cells
For Bioengineering Applications
Marvin Xavierselvan*, Sushila Silwal*, Isaac Macwan, Prabir Patra
Department of Biomedical Engineering
University of Bridgeport, Bridgeport, CT
(* These authors contributed to the work equally)

Abstract
We designed a circuit using the logic elements of FPGA for controlling MTB. The circuit is connected to a mesh of coil, where a path of magnetic field is created using FPGA. The MTB’s motility is controlled in a particular direction along this path. Then the bacterial invasion is studied, highlighting how the MTB cells and mutant cells interact using the FPGA based controller.

Introduction
Magnetotactic bacteria (or MTB) are a group of bacteria that orient along the magnetic field lines of Earth's magnetic field. These bacteria have organelles called magnetosomes that contain magnetic crystals, which aid in aligning with the magnetic field. MTB's can be used in various applications like MEMS, Micro Total Analysis Systems and lab-on-chip. Magnetotactic bacteria can be guided along a predefined path by controlling the magnetic field, these bacteria can sense the magnetic field and can align itself towards the field to move towards the North Pole. By changing the magnetic field along a predetermined path, these bacteria can be guided. This property can be adventurous for invasion of MTB in the mutant cells.

Materials and Methods
We used a 32 AWG coil of thickness 50 micrometer to make a tiny mesh that creates a path for the bacteria by creating the magnetic field. Altera DE2 board is used to provide the current supply for the coil and also to change the direction and the strength of magnetic field. The MTB bacteria is used for the experiment.

Configuring FPGA Controller
FPGAs contain an array of programmable logic blocks and an hierarchy of configurable interconnects that connects the logic block together. The device is configured to pass current through the 32 AWG coil. The current through the coil generates the magnetic field. The device is configured to vary the direction of current flowing through the coil, which changes the magnetic field direction.

Current Work
The MTB bacteria contains the magnetosomes, intracellular membrane bound crystals of iron mineral which consists of either magnetite, that are attracted towards the magnetic field. The current works in our experiments are:

a. Invasion of bacteria in the tumor cells and quantify the number of MTB cells that invaded.

b. The quality of tumor cells after invasion.

c. The quantity of MTB cells that are alive.

Discussion
We have made a very small mesh to create a path for the bacteria to move. With the controller magnetic field is created which the bacteria senses move along the path. The direction of the bacterial motility is well controlled, making them move in a selective path along the mesh.

Conclusion
We focused on making an FPGA mesh for guiding the MTB by controlling the magnetic field generated by the mesh and implementing this idea for using in bioengineering applications like programmable drug delivery, cancer targeting and also in nanofabrication.

References
1) Walder André, Sylvain Martel, “Acting on Nanoparticles Embedded in magnetotactic Bacteria to Implement Propulsion and Steering for Microrobots”, International Conference on Nanotechnology, August 2 - 5, 2007, Hong Kong

