Enzymatic Characterization of *Leishmania major* Phosphatidylethanolamine Methyltransferases *LmjPEM1* and *LmjPEM2*

Stergios Bibis

Kelly Dahlstrom, **Tongtong Zhu**, **Rachel Zuferyey**

* Biology Department, University of Bridgeport, 126 Park Ave, CT 06604
* Department of Biological Sciences, St. Johns University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA
* Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA

Abstract

Phosphatidylcholine (PC) is the most abundant phospholipid in the membranes of the human parasite *Leishmania*. It is synthesized via two metabolic routes, the de novo pathway that starts with the uptake of choline, and the threefold methylation of phosphatidylethanolamine.

Objectives

1. Establish that *Leishmania major* utilizes the methylation pathway involved in PC biosynthesis.
2. Identify putative *Leishmania major* genes involved in the PE methylation pathway.
3. Verify that these putative PE methyltransferase genes are expressed in *L. major* and determine their ability to complement auxotrophy in *Saccharomyces cerevisiae* lacking PE methyltransferase activity.
4. Determine substrate specificities of these enzymes

Results

Fig. 7. *LmjPEM1* and *LmjPEM2* complement the choline auxotrophy phenotype of *S. cerevisiae* double null mutant *scpm1(scpm2)* that lacks PEMT activity

Fig. 8. *LmjPEM1* and *LmjPEM2* act as PEMT enzymes

Conclusion

- *Leishmania major* posses two PE-methyltransferase genes, *LmjPEM1* and *LmjPEM2*
- *Leishmania major* express both *LmjPEM1* and *LmjPEM2* in both promastigotes and amastigotes in a cell cycle dependent manner
- Which correlates to PE-methyltransferase activity
- Expression of *LmjPEM1* and *LmjPEM2* is independent of choline
- As is PE-methyltransferase activity
- *LmjPEM1* and *LmjPEM2* complement the choline auxotrophy of *scpem1(scpcm2)* yeast deficient of PE-methyltransferase activity
- *LmjPEM1* catalyzes the first and second methylations of PE producing MM-PE and DM-PE
- Albeit with lower affinity for the second methylation
- *LmjPEM2* catalyzes all three methylations of PE producing MM-PE, DM-PE, and PC
- Albeit with a lower affinity for the first methylation

References

Acknowledgements

This project was supported by the American Heart Association award 0650001N, the NIH grant P20 RR016475 from the INBRE Program of the National Center for Research Resources and the NIH grant ARRA R03 AI078145 to LZ. The lipid profile data were acquired at Kansas Lipidomics Research Center (KLRC). Instrument acquisition and method development at KLRC were supported by NSF grants MCB 0455318, MCB 0920663, DBI 0521587, DBI 1228622, Kansas INBRE (P20 GM103418 from the National Institute of General Medical Sciences), NSF EPSCoR grant EPS-0236913, Kansas Technology Enterprise Corporation, and Kansas State University.