Closed Loop Deep Brain Stimulation for Parkinson’s disease with Frequency Modulation

Loading...
Thumbnail Image

Authors

Daneshzand, Mohammad
Faezipour, Miad
Barkana, Buket D.

Issue Date

2019-03-29

Type

Other

Language

en_US

Keywords

Deep brain stimulation , Frequency modulation , Parkinson’s disease

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Neural oscillations within the Basal Ganglia (BG) circuitry are associated with Parkinson’s Disease (PD) and are observable through the Local Field Potential (LFP) of the Subthalamic Nucleus (STN) or Globus Pallidus externa (GPe) neurons. LFP amplitude modulation in a delayed feedback protocol for Deep Brain Stimulation (DBS) is shown to destabilize the complex intermittent synchronous states. However, traditional High Frequency Stimulations (HFS) often intensify the synchronization of highly fluctuating neurons, are less efficient in activating all neurons in large scale networks and consume more battery of the DBS device. Here, we investigate the partially synchronous dynamics of a STN-GPe coupling network to examine the effect of frequency adjustment in the stimulation signal. The frequency of the stimulation signal is adjusted according to the nonlinear delayed feedback LFP of the STN population. Frequency adjustment protocol with a fixed stimulation amplitude is shown to increase the desynchronization efficiency and neuronal activation by 25% and 16.2%, respectively, while reducing the energy consumption by 31.5% compared to amplitude modulation methods for stimulation of large networks (1000 neurons).

Description

Citation

Publisher

License

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN